Home | About Mathguru | Advertisements | Teacher Zone | FAQs | Contact Us | Login

 
If you like what you see in Mathguru
Subscribe Today
For 12 Months
US Dollars 12 / Indian Rupees 600
Available in 20 more currencies if you pay with PayPal.
Buy Now
No questions asked full moneyback guarantee within 7 days of purchase, in case of Visa and Mastercard payment
  

Example:Based on Combination (Ways of Selecting a Card)

Post to:

Bookmark and Share



Explanation:

 

Combination

 

In mathematics a combination is a way of selecting several things out of a larger group, where (unlike permutations) order does not matter. In smaller cases it is possible to count the number of combinations. For example given three fruit, say an apple, orange and pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally a k-combination of a set S is a subset of k distinct elements of S. If the set has n elements the number of k-combinations is equal to the binomial coefficient

 

which can be written using factorials as  whenever , and which is zero when k > n. The set of all k-combinations of a set S is sometimes denoted by  .(Our solved example in mathguru.com uses this concept)

 

 

Combinations can consider the combination of n things taken k at a time without or with repetitions. In the above example repetitions were not allowed. If however it was possible to have two of any one kind of fruit there would be 3 more combinations: one with two apples, one with two oranges, and one with two pears.

With large sets, it becomes necessary to use mathematics to find the number of combinations. For example, a poker hand can be described as a 5-combination (k = 5) of cards from a 52 card deck (n = 52). The 5 cards of the hand are all distinct, and the order of cards in the hand does not matter. There are 2,598,960 such combinations, and the chance of drawing any one hand at random is 1 / 2,598,960.

 

http://en.wikipedia.org/wiki/Combination

 

The above explanation is copied from Wikipedia, the free encyclopedia and is remixed as allowed under the Creative Commons Attribution- ShareAlike 3.0 Unported License.