Home | About Mathguru | Advertisements | Teacher Zone | FAQs | Contact Us | Login

 
If you like what you see in Mathguru
Subscribe Today
For 12 Months
US Dollars 12 / Indian Rupees 600
Available in 20 more currencies if you pay with PayPal.
Buy Now
No questions asked full moneyback guarantee within 7 days of purchase, in case of Visa and Mastercard payment
  

Example:Verify Property of Transpose

Post to:

Bookmark and Share



Explanation:

 

Matrix (mathematics)

 

Specific elements of a matrix are often denoted by a variable with two subscripts. For instance,a2,1 represents the element at the second row and first column of a matrix A.

In mathematics, a matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers, symbols, or expressions. The individual items in a matrix are called its elements or entries. An example of a matrix with six elements is

 

http://en.wikipedia.org/wiki/Matrix_(mathematics)

 

Matrix addition

 

In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. However, there is another operation which could also be considered as a kind of addition for matrices.

The usual matrix addition is defined for two matrices of the same dimensions. The sum of two m-by-n matrices A and B, denoted by A + B, is again an m-by-n matrix computed by adding corresponding elements. For example:

(Our solved example in mathguru.com uses this concept)

We can also subtract one matrix from another, as long as they have the same dimensions. A - B is computed by subtracting corresponding elements of A and B, and has the same dimensions as A and B. For example:

 

http://en.wikipedia.org/wiki/Matrix_addition

 

Transpose

 

In linear algebra, the transpose of a matrix A is another matrix AT (also written A′, Atr or tA) created by any one of the following equivalent actions:

1.  reflect A over its main diagonal (which runs top-left to bottom-right) to obtain AT

2.  write the rows of A as the columns of AT

3.  write the columns of A as the rows of AT

4.  visually rotate A 90 degrees clockwise, and mirror the image in a vertical line to obtain AT

Formally, the (i,j) element of AT is the (j,i) element of A.

[AT]ij = [A]ji

(Our solved example in mathguru.com uses this concept)

If A is an m × n matrix then AT is a n × m matrix. The transpose of a scalar is the same scalar.

 

Examples

1. 

2. 

3. 

 

http://en.wikipedia.org/wiki/Transpose

 

The above explanation is copied from Wikipedia, the free encyclopedia and is remixed as allowed under the Creative Commons Attribution- ShareAlike 3.0 Unported License.